

Marjo Palviainen, Frank Berninger, Kajar Köster and Jukka Pumpanen

University of Helsinki Department of Forest Sciences

U-Arctic conference, 7.9.2018, Helsinki

Background

- 10-15 million ha of boreal forests burn annually
- Climate warming has already increased and will increase the extent, intensity and frequency of forest fires in high-latitude boreal forests
- Fires decrease forest carbon (C) stocks and may cause long-term changes in C dynamics by altering forest regrowth, successional trajectories, litter production, organic matter decomposition and the fluxes of energy, water and nutrients
- ➤ Quantifying the magnitude of post-fire C changes and the rate of recovery of C stocks is necessary for understanding how changing fire frequency and intensity influence regional and global C budgets and for predicting future changes in C budgets.

Research questions

- How quickly forest C pools recover after fire and how the recovery of C stocks vary across boreal zone?
- How fires change the distribution of C among different ecosystem components?
- To what extent time since fire and climatic conditions explain the variation in C accumulation rate?

- Data in total of **368 plots** from **15 fire chronosequence studies** from different parts of boreal zone (latitudes 44–67°N)
- Chronosequences covered at minimum the first 100 years after fire
- MAT varied from -9.5°C to +5.2°C and MAP from 295 mm to 824 mm.
- The mean annual GPP 0.31-0.94 kg m²

Schematic C dynamics after fire

- Living biomass accumulates over time until it stabilizes or even decline
- C increases linearly in O-horizon, mineral soil C remains quite unchanged
- Dead wood shows an U-shaped pattern

Carbon accumulation in living trees

Gompertz function

$$y = (a_0 * Climate variable + a_1)e^{b-c*Time}$$

Age (yrs)

Potential evapotranspiration (PET) best explained the variation in C accumulation rate

AIC
1674.542
1679.842
1679.583
1680.593
1681.594
1675.959
1672.256
1675.075
1681.479

Carbon in the organic layer

- No clear trend, large variation
- Average C accumulation rate 6 g C m² yr⁻¹

C accumulation rates < 5-30 g m² yr⁻¹

Total ecosystem carbon (living trees + ground vegetation + dead trees + organic layer)

Time since fire and PET together explained 57% of the variation in total ecosystem C stocks

C accumulation rates < 5-60 g m² yr⁻¹

Conclusions

- Annual C accumulation rates varied from < 5 to 60 g m²
- PET is the most important factor explaining the C accumulation in trees and total ecosystem
- Accumulation pattern is not clear: linear vs. curved?
- O-horizon: several factors affect (climate > biomass production and decomposition), changes in vegetation, successional trajectories, microbial communities, organic matter quality, the amount of dead trees and rhizosphere priming effect, the formation of pyrogenic compounds etc.
- Soil is naturally heterogenic, and during the fire, the severity of combustion is variable ranging from a light burning to an extensive combustion of surface soils layers which may further increase the spatial variation → adequate number of samples?

Methodological remarks

- Weaknesses of the chronosequence method:
- Assumption that only time since disturbance causes the differences
- Pre-fire structure and fire severity are very difficult to identify and may vary within the chronosequence (also the severity of previous fires may have varied between the sites)
 - Difficult to ascertain the similarity of plots within the chronosequence
 - Fertility, paludification, soil texture
 - Stochastic phenomena, history in pest and diseases

Thank you!

This research was supported by the Academy of Finland (project number 286685)

Collaboration:
Yves Bergeron
Ben Bond-Lamberty
Daniel Kashian
Markku Larjavaara
Anatoly Prokushkin
Meelis Seedre
David Wardle

